Zinco, vitamina D e sistema imune: papel na infecção pelo novo coronavírus

Maria do Carmo de Carvalho e Martins, Amanda Suellenn da Silva Santos Oliveira

Resumo


A pandemia de covid-19, doença causada pelo novo coronavírus, representa um importante desafio no Brasil e no mundo. Diferentes tipos de informações são divulgadas sobre o uso de vitaminas e minerais para prevenir ou curar a covid-19. O objetivo dessa revisão é descrever o papel fisiológico dos micronutrientes zinco e vitamina D e o possível benefício do uso de suplementação para a melhora da imunidade na prevenção e tratamento da covid-19. Metodologia: trata-se de uma revisão narrativa que apresenta aspectos metabólicos e fisiológicos da vitamina D e do Zinco e os efeitos desses nutrientes na doença do coronavírus-19. Desenvolvimento: os estudos têm demonstrado diferentes funções exercidas pela vitamina D e pelo zinco no organismo humano. Dentre essas funções, destacam-se suas atividades reguladoras do sistema imunológico e de processos inflamatórios. No contexto da covid-19, uma infecção viral que possui em sua apresentação clínica a presença de processo inflamatório, pneumonia e síndrome do desconforto respiratório agudo. Tem sido sugerido que os dois micronutrientes poderiam atuar inibindo a replicação do vírus, e assim modulando a resposta imune e diminuindo a expressão de citocinas pró-inflamatórias. Apesar dos mecanismos propostos, os efeitos da utilização de suplementação desses nutrientes na infecção pelo novo coronavírus ainda não estão elucidados, pois os ensaios clínicos ainda estão em andamento. Assim, o uso de suplementação para melhorar a imunidade na prevenção e tratamento da covid-19 não tem respaldo cientifico até o momento.

Texto completo:

PDF

Referências


ACEVEDO-MURILLO, J. A. et al. Zinc supplementation promotes a Th1 response and improves

clinical symptoms in fewer hours in children with pneumonia younger than 5 Years old. A randomized

controlled clinical trial. Frontiers in Pediatrics, v. 7, n. 431, 2019.

ALMEIDA, L. K. M. L. et al. Vitamin D (VD3) antioxidative and anti-inflammatory activities: Peripheral

and central effects. Eur J Pharmacol., 2020.

ASSOCIAÇÃO BRASILEIRA DE NUTROLOGIA. Posicionamento Da Associação Brasileira De

Nutrologia (ABRAN) A Respeito De Micronutrientes E Probióticos Na Infecção Por Covid-19.

Disponível em: < https://abran.org.br/2020/05/01/posicionamento-da-associacao-brasileira-denutrologia-abran-a-respeito-de-micronutrientes-e-probioticos-na-infeccao-por-covid-19/>.

BRINGHURST, F. R.; DEMAY, M. B.; KRANE, S. M.; KRONENBERG, H. M. Disorders of bone and

mineral metabolism. IN: KASPER, D. L.; BRAUNWALD, E.; FAUCI, A.; HAUSER, S.; LONGO, D.;

JAMESON, J. L. eds. Harrison's principles of internal medicine. New York: McGraw-Hill, 2002.

CASCELLA, M. et al. Features, Evaluation and Treatment Coronavirus (COVID-19). Treasure

Island (FL): StatPearls Publishing, 2020.

DANCER, R.C. et al. Vitamin D deficiency contributes directly to the acute respiratory distress

syndrome (ARDS). Thorax, v. 70, p. 617–624, 2015.

DIMAKOPOULOS, I. et al. Intake and contribution of food groups to vitamin D intake in a

representative sample of adult Greek population. Nutrition, v. 72, 2020.

DUELAND, S. P.; HELGERUD, J. L.; DREVON, C. A. Absorption, distribution, and transport of vitamin

D3 and 25-hydroxyvitamin D3 in the rat. Am J Physiol., v. 45, p. E463-467, 1983.

FREDERICKSON, C. J.; SUH, S. W.; SILVA, D.; THOMPSON, R. B. Importance of zinc in the central

nervous system: the zinc-containing neuron. J Nutr, v. 130, n. 5, Suppl, p. 14715-835, 2000.

GAMMOH, N. Z.; RINK, L. Zinc in Infection and Inflammation. Nutrients, v. 9, n. 6, 2017.

GINDE, A. A. et al. High Dose Monthly Vitamin D for Prevention of Acute Respiratory Infection in Older

Long-Term Care Residents: A Randomized Clinical Trial. J Am Geriatr Soc., v. 65, n. 3, p. 496–503,

GIUDICI, K. V.; PETERS, B. S. E.; MARTINI, L. A. Vitamina D. ILSI Brasil, 2018.

GOMBART, A. F.; PIERRE, A.; MAGGINI, S. A Review of Micronutrients and the Immune SystemWorking in Harmony to Reduce the Risk of Infection. Nutrients, v. 12, 2020.

GONCALVES-MENDES, N. et al. Impact of vitamin D supplementation on influenza vaccine response

and immune functions in deficient elderly persons: a randomized placebo-controlled trial. Front

Immunol., v. 10, n. 65, 2019.

HAMID, S.; MIR, M. Y.; ROHELA, G. K. Novel coronavirus disease (COVID-19): a pandemic

(epidemiology, pathogenesis and potential therapeutics). New Microbes and New Infections, v. 35,

HAUSSLER, M. R.; MCCAIN, T. A. Basic and clinical concepts related to vitamin D metabolism and

action (second of two parts). N Engl J Med, v. 297, p. 1041-50,1977

HOJYO, S.; FUKADA, T. Roles of Zinc Signaling in the Immune System. J Immunol Res., v. 2016,

HOLICK, M.F. Vitamin D: Photobiology, metabolism, and clinical applications. In: de GROOT, L. C.,

ed. Endocrinology, p. 990-1011. 1995.

HOLICK, M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and

prevention. Rev Endocr Metab Disord., v.18, p. 153–165, 2017.

HUANG, F. et al. Identification of amitriptyline HCl, flavin adenine dinucleotide, azacitidine and

calcitriol as repurposing drugs for influenza A H5N1 virus-induced lung injury. PLoS Pathog, v. 16, n.

, 2020.

IBS, K.H.; RINK, L. Zinc-altered immune function. J Nutr, v. 133, n. 5, p. 1452S-1456S, 2003.

JAROSZ, M. et al. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling.

Inflammopharmacology, v. 25, n. 1, p. 11-24, 2017.

LEVINE, M. A. Normal Mineral homeostasis - Interplay of Parathyroid Hormone and Vitamin D. In:

HOCHBERG, Z. ed. Vitamin D and Rickets. v. 6. Basel: Karger, 2003. p.14-33.

LU, C.; LIU, X.; JIA, Z. 2019-nCoV transmission through the ocular surface must not be ignored.

Lancet, v. 395, n. 10224, 2020.

MAFRA, D.; COZZOLINO, S. M. F. Importância do zinco na nutrição humana. Rev. Nutr., v. 17, n. 1,

p. 79-87, 2004.

MAGGINI, S.; BEVERIDGE, S.; SUTER, M. A combination of high-dose vitamin C plus zinc for the

common cold. J Int Med Res., v. 40, n. 1, p. 28-42, 2012.

MANION, M. et al. Vitamin D deficiency is associated with IL-6 levels and monocyte activation in HIVinfected persons. PLoS ONE, v. 12, 2017.

MARTENS, P. J. et al. Vitamin D's Effect on Immune Function. Nutrients, v. 12, n. 5, 2020.

MATTILA, P. H. Contents of cholecalciferol, ergocalciferol, and their 25-hydroxylated metabolites in

milk-products and raw meat and liver as determined by Hplc. J. Agric. Food Chem., v. 43, p. 2394-

, 1995.

MCALINDON, T. E.; LO, G. H. Nutritional and Nutritional Supplement Interventions for Osteoarthritis.

In: Osteoarthritis. – Mosby, 2007.

MEUNIER, N. et al. Importance of zinc in the elderly: The ZENITH study. Eur J Clin, Nutr, London, v.

, n. 2, p. 1S-4S, 2005.

MORAIS, C. C.; COMINETTI, C. COZZOLINO, S. M. F. Vitamina D. In: Biodisponibilidade de

nutrientes. 5. ed. rev. e atual. -- Barueri, SP: Manole, 2016.

MÜLLER, O.; NEUHANN, F.; RAZUM, O. Epidemiology and control of COVID-19. Deutsche

Medizinische Wochenschrift, 2020.

MURDOCH, D. R. et al. Effect of vitamin D3 supplementation on upper respiratory tract infections in

healthy adults: the VIDARIS randomized controlled trial. JAMA., v. 308, n. 13, p. 1333-1339, 2012.

ORGANIZAÇÃO PAN-AMERICANA DE SAÚDE. Folha informativa – COVID-19 (doença causada

pelo novo coronavírus). Disponível em:

>.

PATEL, N. et al. Baseline serum vitamin A and D levels determine benefit of oral vitamin A&D

supplements to humoral immune responses following pediatric influenza vaccination. Viruses, v. 11,

n. 10, 2019.

PRASAD, A.S. Zinc deficiency: has been known of for 40 years but ignored by global organisations.

Br Med J, v. 326, n. 7386, p. 409-510, 2003.

PROSSER, D. E.; JONES, G. Enzymes involved in the activation and inactivation of vitamin D.

Trends Biochem Sci, v. 29, p. 664-73, 2004

RAZZAQUE, M. S. COVID-19 Pandemic: Can Maintaining Optimal Zinc Balance Enhance Host

Resistance? Preprints, 2020.

RERKSUPPAPHOL, S.; RERKSUPPAPHOL, L. A Randomized Controlled Trial of Zinc

Supplementation as Adjuvant Therapy for Dengue Viral Infection in Thai Children. Int J Prev Med., v.

, 2018.

REZAEI, R. Immunomodulatory effects of Vitamin D in influenza infection. Current Immunology

Reviews, v. 14, p. 40-49, 2018.

ROTHAN, H. A.; BYRAREDDY, S. N. The epidemiology and pathogenesis of coronavirus disease

(COVID-19) outbreak. Journal of Autoimmunity, v. 109, 2020.

SALGUEIRO, M. J. et al. Zinc as an essential micronutrient: a review. Nutr Res, USA, v. 20, n.5, p.

-755, 2000.

SANTOS, G. M.; SILVA, L. R.; SANTANA, G. O. Repercussões nutricionais em crianças e

adolescentes na presença de doenças inflamatórias intestinais. Rev. paul. pediatr., v. 32, n. 4, p.

-411, 2014.

SHANKAR, A. H.; PRASAD, A. S. Zinc and immune function: the biological basis of altered resistance

to infection. Am J Clin Nutr, v. 68, p. 447-63, 1998.

SHITTU, M. O.; AFOLAMI, O. I. Improving the efficacy of chloroquine and hydroxychloroquine against

SARS-CoV-2 may require zinc additives - A better synergy for future COVID-19 clinical trials. Le

Infezioni in Medicina, v. 28, n. 2, p. 192-197, 2020.

SILBERSTEIN, M. Vitamin D: A simpler alternative to tocilizumab for trial in COVID-19? Med

Hypotheses, 2020.

SOCIEDADE BRASILEIRA DE PEDIATRIA. Deficiência de vitamina D em crianças e

adolescentes. SBP, 2014.

TE VELTHUIS, A. J. et al. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro

and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog, v. 6, 2010.

TEYMOORI-RAD, M. et al. The interplay between vitamin D and viral infections. Reviews in Medical

Virology, v. 29, n. 2, 2019.

TOBAIQY, M. et al. Therapeutic Management of COVID-19 Patients: A systematic review. Infection

Prevention in Practice, 2020.

TSUJINO, I. et al. Pulmonary activation of vitamin D3 and preventive effect against interstitial

pneumonia. J Clin Biochem Nutr, v. 65, p. 245–251, 2019.

U. S. National Library of Medicine. Coronavirus 2019 (COVID-19)- Using Ascorbic Acid and Zinc

Supplementation (COVIDAtoZ). Disponível em:

https://clinicaltrials.gov/ct2/show/NCT04342728?term=NCT04342728&draw=2&rank=1>.

U. S. National Library of Medicine. COvid-19 and Vitamin D Supplementation: a Multicenter

Randomized Controlled Trial of High Dose Versus Standard Dose Vitamin D3 in High-risk COVID-19

Patients (CoVitTrial). Disponível em: .

VALENCIA, D. N. Brief Review on COVID-19: The 2020 Pandemic Caused by SARS-CoV-2. Cureus,

v. 12, n. 3, 2020.

WALTERS, M. R. Newly identified actions of the vitamin D endocrine system. Endocr Rev, v. 13, p.

-64. 1992.

WANG, D. et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel coronavirusinfected pneumonia in Wuhan, China. JAMA, 2020.

WANG, D. et al. Distribution of Free 25OHD in elderly population based on LC-MS/MS. J Steroid

Biochem Mol Biol., 2020.

WANG, L.; SONG, Y. Efficacy of zinc given as an adjunct to the treatment of severe pneumonia: A

meta-analysis of randomized, double-blind and placebo-controlled trials. Clin Respir J., v. 12, n. 3, p.

-864, 2018.

WANI, A. L. et al. Zinc: An element of extensive medical importance. Current Medicine Research

and Practice, v. 7, n. 3, p. 90-98, 2017.

WESSELS, I.; MAYWALD, H.; PISTA, L. Zinc as a Gatekeeper of Immune Function. Nutrients, v. 9,

n. 12, 2017.

WILLHEIM, M.; THIEN, R.; SCHRATTBAUER, K. et al. Regulatory effects of 1alpha,25-

dihydroxyvitamin D3 on the cytokine production of human peripheral blood lymphocytes. J Clin

Endocrinol Metab, v. 84, p. 3739-44, 1999.

WINTERGERST, E. S.; MAGGINI, S.; HORNIG, D. H. Contribution of selected vitamins and trace

elements to immune function. Annals of Nutrition and Metabolism, v. 51, n. 4, p. 301-323, 2007.

World Health Organization. Novel coronavirus (2019-nCoV) situation report. Disponível em:

ncov.pdf?sfvrs n=98ef7 9f5_2>.

ZHANG, J.; XIE, B.; HASHIMOTO, K. Current status of potential therapeutic candidates for the

COVID-19 crisis. Brain, Behavior, and Immunity, 2020.

ZHANG, L.; LIU, Y. Potential interventions for novel coronavirus in China: A systematic review. J Med

Virol., v. 92, p. 479–490, 2020.

ZHOU, W. et al. Association Between Vitamin D Status and Sepsis. Clin. Lab., v. 64, p. 451–460,

ZHOU, Y. F.; LUO, B. A.; QIN, L. L. The association between vitamin D deficiency and communityacquired pneumonia: A meta-analysis of observational studies. Medicine, v. 98, 2019.




DOI: https://doi.org/10.58969/25947125.4.0.2020.110

Apontamentos

  • Não há apontamentos.


Direitos autorais 2020 REVISTA DA FAESF


ISSN 2594-7125

©2017 FAESF - Faculdade de Floriano


Indexada:

google acadêmico sumários.org

  LOCKSS